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LETTER TO TH E JOURNAL

Unconventional microRNA role: Enhancing the human
leukocyte antigen class I antigen processing pathway via
interacting with a silencer

Dear Editor,

The unconventional functional mechanisms of

microRNA (miRNA)-mediated RNA or protein acti-

vation are complex and diverse,1 like miRNA binding to

AU-rich elements (ARE)2 or competingwith RNA-binding

proteins.3 Our own data demonstrated that miR-16 could

bind to the coding sequence (CDS) of classical and

non-classical human leukocyte antigen class I (HLA-I)

molecules, thereby inducing their expression.4 However,

the interaction of silencers with miRNAs has not yet been

investigated. Silencer features include a high GC content,5

DNase hypersensitivity sites6 and H3K27me3 regions.7

Here we identified for the first time that miR-155-5p

can directly bind a silencer in the 3′untranslated region

(3′UTR) of TAP-binding protein (tpn) thereby increasing

the HLA-I surface expression.

Using miRNA trapping by RNA in vitro affinity purifi-

cation (miTRAP),8 in silico analyses and molecular exper-

iments, we identified miR-155-5p targeting of tpn 3′ UTR

in melanoma cells affecting tpn and cell surface HLA-I

expression, which has also clinical relevance. Interestingly,

upon deletion of the predicted binding site within tpn

3´UTR (Figure 1A), luciferase (luc) reporter assays indi-

cated higher relative luc activity of the wild type (wt)

compared to the del 3′UTR in HEK293T cells (Figure 1B),

which is opposite to the conventional function of miRNAs

leading to a downregulation. Overexpression of miR-155-

5p in three melanoma cell lines (Figure 1C) increased

their tpn messenger RNA (mRNA) (Figure 1D) and pro-

tein levels (Figure 1E,F). This upregulation was specific

for tpn since the mRNA of programmed death ligand

1 (PD-L1), another target of miR-155-5p,9 was downreg-

ulated in the miR-155-5p-transfected MZ-Mel2 cell line

(Figure 1G). Despite the overall expression levels of the

HLA-I heavy chain (HC) were not altered in the miR-

155-5p transfectants (Figure 1F,H), a tpn-mediated upreg-

ulation of the HLA-ABC and HLA-BC surface antigens

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the

original work is properly cited.

© 2024 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

was found on FM81 and MZ-Mel2 cells (Figure 1I,J), but

not on FM3 cells, which might be probably due to the

high HLA-I surface expression when compared to FM81

and MZ-Mel2 cells (Figure 1F). Actinomycin D treatment

revealed a significant increase in the tpn mRNA half-life

in FM81 miR-155-5p transfectants (Figure 1K). Using a

CD107a degranulation assay, a reduced NK cell-mediated

cytotoxicity against miR-155-5p transfected MZ-Mel2 cells

expressing increasedHLA-I surface antigenswas shownby

lower numbers of CD107a-positive NK cells (Figure 1L).

The overall survival (OS) analysis of 214 metastatic

melanoma cases with patients’ outcomes demonstrated a

positive correlation of miR-155 (miR-155HG) (Figure 2A),

tpn (Figure 2B) and HLA-A (Figure 2C) expression

levels with the OS of patients, thereby confirming ours

in vitro experiments. Similar results were obtained by

bioinformatics analyses of all 444 cases or 63 cases of

distant metastatic melanoma from the “TCGA Skin

Cutaneous Melanoma (SKCM)” dataset (Figure 2D,E).

Furthermore, a strong positive correlation between miR-

155 expression and the frequency of CD8+ T cells was

found in this dataset using the CIBERSORT web tool

(Figure 2F,G).

Subsequently, in silico analysis of the miRNA binding

site sequence in the 3′ UTR of tpn revealed a high GC con-

tent and a DNase hypersensitivity site (DHS) suggesting

its role as a part of a silencer (Table S1 and Figure S1).

Three sequences (sil1, sil3, sil4) upstream of the binding

site, an AU-rich element predicted via the ARE site web

tool and the potential GA-, AU- and GC-rich areas within

the miR-155-5p binding site were deleted in the tpn 3´UTR

(Figure 3A and Figure S2A) and cloned into themiR-GLO-

vector since the miRNA-mediated activation10 is linked to

the binding to specific sequence elements. The luc reporter

assay revealed that in comparison to the wt 3′UTR, the

transfection of AREdel, AUdel, GCdel, or GAdel vectors

into the HEK293T cells reverted the suppressive effects in
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F IGURE 1 MiR-155-5p-mediated upregulation of tapasin enhances the human leukocyte antigen class I (HLA-I) cell surface expression.

(A) The binding site predicted tpn 3′untranslated region (3′UTR) (red) and miR-155-5p (green) interactions, including sequence alignment,

secondary structure and free energy (mfe = −24.4 kcal/mol) were obtained using the RNAhybrid online database. (B) MiR-155-5p and tpn

direct interaction identified by dual luciferase reporter assay using HEK293T cells and pmiR-GLO plasmid. The Firefly luciferase (FFL)

activities were normalized to Renilla luciferase activities to give the relative light units (RLU). The data represent the mean ± SD of three

biological replicates upon their normalization to parental cells. (C, D) RT-qPCR was performed to determine the mRNA expression of

miR-155-5p in three metastatic melanoma cell lines after transfection of miR-155-5p mimic or miR mimic NC for 48 hrs. The data represent the

mean ± SD of three independent biological replicates upon their normalization to parental cells. (E, F) To determine the expression of the tpn

protein after transfection with miR-155-5p or NC, Western blot analyses were performed. The relative band intensities (A.U., arbitrary units) of

each group were compared to that of the corresponding parental melanoma cells and normalized to the corresponding GAPDH signals

(mean ± SD, n = 3 biological replicates). (G) RT-qPCR was performed to determine PD-L1 mRNA expression after transfection of the

metastatic melanoma cell line MZ-Mel2 with miR-155-5p mimic or NC mimic for 48 hrs. Data represent the mean ± SD of three independent

biological replicates upon their normalization to parental cells. (H) Western blot analyses were performed to explore the expression of the

HLA-I heavy chain after transfection with miR-155-5p or NC. The relative band intensities (A.U., arbitrary units) of each group were

compared with the corresponding parental melanoma cells and normalized to the corresponding GAPDH signals (mean ± SD, n = 4

biological replicates). (I, J) Flow cytometry was used to determine the HLA-I surface expression. For staining melanoma cells, Abs directed

against HLA-ABC and HLA-BC were employed. The data were presented as mean fluorescence intensities (MFI) to parental cells

(mean ± SD, n = 3 biological replicates). (K) The Act D mRNA stability assay determines the half-life of the tpn mRNA expression at different

treatment time points after transfection as previously described using RT-qPCR normalized to the mRNA expression of ALAS1 (mean ± SD,

n = 3 biological replicates). (L) The CD107a degranulation assay was employed to determine the miR-155-5p-mediated effect on HLA-I cell

surface expression in association with NK cell cytotoxicity (mean ± SD, n = 3 biological replicates). *p < .05, **p < .01 and ***p < .001.
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F IGURE 2 Clinical significance of miR-155-5p and its relationship with immune cell infiltration. (A–C) The dataset (GSE65904) from

the "R2: Genomics Analysis and Visualization Platform (http://r2.amc.nl)” web tool was used to evaluate the patient’s OS determined by the

Kaplan Meier estimation curve and correlations of MIR155HG expression with tpn or HLA-A expression, respectively. (D) The TCGA-SKCM

dataset was used to correlate the patients’ OS with miR-155 expression. (E) 63 metastatic melanoma cases with available RNA and miRNA seq

data in the TCGA-SKCM dataset were employed to verify the association between tpn and miR-155. (F, G) Using the dataset from E, the role of

miRNA expression on immune cell composition and the relationship between CD8+ T cell infiltration and the expression of miR-155 were

analyzed by the generation of a heat map. (mean ± SD, n = 3 biological replicates). *p < .05, **p < .01 and ****p < .0001.

the negative control (NC), parental cells and the positive

effect in miR-155-5p transfectants. Since these elements

belong to the miR-155-5p binding site, their deletions have

disrupted the binding site leading to the loss of the positive

miR-155-5p function on tpn after transfection confirming

these elements represent parts of the miR-155-5p binding

site and the core part of a silencer. Whereas in both NC

and parental cells, the repressive effects of sil1del, sil3del

or sil4del groups were similar to thewt group, all sil groups

in the miR-155-5p transfected cells have positive, but much

lower effects than in the wt group (Figure 3B) suggesting

the disruption of secondary mRNA structures by the par-

tial sequence deletions (Figure S2B–K) are involved in this

enhancement.

In addition, a CRISPR/Cas9-mediated deletion of

the miR-155-5p binding site was generated in the FM3

melanoma cell line upon transfection of modified PX458

(Figure 3C and Figure S2A). Sanger sequencing (data not

shown) and PCR amplification (Figure S2L) demonstrated

the successful deletion of the miR-155-5p binding site

(R3R9) resulting in an upregulation of tpn mRNA and

protein levels when compared to the mock vector (PX458)
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F IGURE 3 Characterization of the miR-155-5p binding site on the 3′untranslated region (3′UTR) of tapasin as a silencer. (A) Simulation

diagram for the sequence of the miR-155-5p binding site, elements around this binding site and characteristics of this sequence. (B) Deletion of

the binding sites and of some possible functional elements to investigate the activity of this area using luciferase assays using pmiR-GLO

vector after transfection with miR-155-5p mimics or negative control mimics (mean ± SD, n = 3 biological replicates). (C) Simulation diagram

of the knockout sequence of the binding site area using CRISPR/Cas9 system. (D) RT-PCR was performed to investigate the tpn mRNA

expression after knocking out the binding site via vector R3 and R9 (R3R9) as well as using the transfection with the PX458 empty vector “the

pSpCas9 (BB)−2A-GFP plasmid” (PX458) as negative control (mean ± SD, n = 3 biological replicates), respectively. (E, F) The Western blot

analyses were performed to determine the expression of the tpn protein after knocking out the binding site via CRISPR/Cas9. The relative

band intensities (A.U., arbitrary units) of each group were compared to that of the corresponding parental FM3 melanoma cells and

normalized to the corresponding GAPDH signals (mean ± SD, n = 3 biological replicates). (G) Immune cytofluorescence was used to

investigate the correlation between tpn (green) and H3K27me3 (red) after transfection with miR-155-5p mimics and NC mimics. The scale is

125 µm. *p < .05, **p < .01 and ***p < .001.

(Figure 3D–F). As shown in Figure 3G, the tpn expression

(green) was higher in the miR-155 group than in the other

two groups, while the expression of H3K27me3 (red) was

inversely correlated due to direct or indirect binding of tpn

to H3K27me3 as shown by immunoprecipitation (Figure

S2M), which strengthen the evidence that the binding site

is part of a silencer.

Finally, to exclude that the miRNA-mediated activation

of tpn was caused by RBPs, the four proteins HNRNPL,

HNRNPC, IGF2BP1 and IGF2BP3, known to bind to the

tpn 3′UTR, were explored. Compared to HNRNPC and

HNRNPL, the IGF2BP1 and IGF2BP3 binding sites overlap

with that of miR-155-5p (Figure S3A–D). Interestingly,

the miR-155-5p binding site is a part of the IGF2BP1 and
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F IGURE 4 MiR-155-5p-mediated inhibition of the silencer area and activation of the antigen processing and presentation pathway.

During the progression of melanoma, human leukocyte antigen class I (HLA-I) surface expression is gradually lost accompanied by a

decreased expression of tpn. Upon transfection into melanoma cell lines, miR-155-5p binding to a silencer sequence in the tpn 3′untranslated

region (3′UTR) disrupts the function of the silencer, thereby promoting the transcription. The upregulation of tpn enhances the antigen

processing and presentation pathway, thereby leading to increased HLA-I surface antigens for immune cell recognition.

IGF2BP3 potential binding sites containing a GC- and an

AU-rich element (Figure S3E). Concentration gradient

silencing assays revealed an interaction of miR-155-5p and

these RBPs (Figure S3F–H).

This study proposes a new unconventional function

of miRNAs that enhances target transcription through

binding a silencer thereby activating the downstream

pathway(s) (Figure 4). Using miR-155-5p as a model, this is

the first report (i) identifying a silencer in the tpn 3′UTR,

which (ii) directly interacts with a non-coding RNA and

(iii) has clinical relevance. These data extend miRNAs’

functions and add new insights to our knowledge of

silencers.
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